SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "LAR1:cth ;pers:(Johnsson Filip 1960);pers:(Heinisch Verena 1991)"

Sökning: LAR1:cth > Johnsson Filip 1960 > Heinisch Verena 1991

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Heinisch, Verena, 1991, et al. (författare)
  • Interconnection of the electricity and heating sectors to support the energy transition in cities
  • 2019
  • Ingår i: International Journal of Sustainable Energy Planning and Management. - 2246-2929. ; 24, s. 57-66
  • Tidskriftsartikel (refereegranskat)abstract
    • The electricity, heating, and transport sectors in urban areas all have to contribute to meeting stringent climate targets. Cities will face a transition from fossil fuels to renewable sources, with electricity acting as a cross-sectorial energy carrier. Consequently, the electricity demand of cities is expected to rise, in a situation that will be exacerbated by ongoing urbanisation and city growth. As alternative to an expansion of the connection capacity to the national grid, local measures can be considered within city planning in order to utilize decentralised electricity generation, synergies between the heating and electricity sectors, and flexibility through energy storage technologies. This work proposes an optimisation model that interconnects the electricity, heat, and transport sectors in cities. We analyse the investments in and operation of an urban energy system, using the City of Gothenburg as an example. We find that the availability of electricity from local solar PV together with thermal storage technologies increase the value of using power-to-heat technologies, such as heat pumps. High biomass prices together with strict climate targets enhance the importance of electricity in the district heating sector. A detailed understanding of the integration of local low-carbon energy technologies can give urban planners and other city stakeholders the opportunity to take an active role in the city’s energy transition.
  •  
2.
  • Heinisch, Verena, 1991, et al. (författare)
  • Organizing prosumers into electricity trading communities: Costs to attain electricity transfer limitations and self‐sufficiency goals
  • 2019
  • Ingår i: International Journal of Energy Research. - : Hindawi Limited. - 1099-114X .- 0363-907X. ; 43:13, s. 7021-7039
  • Tidskriftsartikel (refereegranskat)abstract
    • Among household electricity end users, there is growing interest in local renewable electricity generation and energy independence. Community‐based and neighborhood energy projects, where consumers and prosumers of electricity trade their energy locally in a peer‐to‐peer system, have started to emerge in different parts of the world. This study investigates and compares the costs incurred by individual households and households organized in electricity trading communities in seeking to attain greater independence from the centralized electricity system. This independence is investigated with respect to: (i) the potential to reduce the electricity transfer capacity to and from the centralized system and (ii) the potential to increase self‐sufficiency. An optimization model is designed to analyze the investment and operation of residential photovoltaic battery systems. The model is then applied to different cases in a region of southern Sweden for year 2030. Utilizing measured electricity demand data for Swedish households, we show that with a reduced electricity transfer capacity to the centralized system, already a community of five residential prosumers can supply the household demand at lower cost than can prosumers acting individually. Grouping of residential prosumers in an electricity trading community confers greater benefits under conditions with a reduced electricity transfer capacity than when the goal is to become electricity self‐sufficient. It is important to consider the local utilization of photovoltaic‐generated electricity and its effect on the net trading pattern (to and from the centralized system) when discussing the impact on the electricity system of a high percentage of prosumers.
  •  
3.
  • Heinisch, Verena, 1991, et al. (författare)
  • Prosumers in the Electricity System—Household vs. System Optimization of the Operation of Residential Photovoltaic Battery Systems
  • 2019
  • Ingår i: Frontiers in Energy Research. - : Frontiers Media SA. - 2296-598X. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • An increase in distributed small-scale generation and storage in residential prosumer households requires an understanding of how the household-controlled operation of these distributed technologies differ from a system-optimal utilization. This paper aims at investigating how residential photovoltaic (PV)-battery systems are operated, given different assumed incentives, and whether or not a prosumer induced operational pattern differs from what is desirable from a total electricity system point of view. The work combines a household optimization model that minimizes the annual household electricity bill for two price zones in southern Sweden with a dispatch model for the northern European electricity supply system. The results show significant differences in the charging and discharging patterns of residential batteries. A household annual electricity cost minimization gives many hours in which only a fraction of the battery capacity is used for charging and discharging, mainly driven by incentives to maximize self-consumption of PV-generated electricity. In contrast, in a total electricity system operational cost minimization larger fractions of the available battery capacity are utilized within single hours. In the total system optimization case, the batteries are charged and discharged less frequently and the energy turnover in the batteries is only half that of the household optimization case. For all the cases studied, the hourly electricity price provides only a limited incentive for households to operate their batteries in a system-optimal manner.
  •  
4.
  • Heinisch, Verena, 1991, et al. (författare)
  • Smart electric vehicle charging strategies for sectoral coupling in a city energy system
  • 2021
  • Ingår i: Applied Energy. - : Elsevier BV. - 1872-9118 .- 0306-2619. ; 288
  • Tidskriftsartikel (refereegranskat)abstract
    • The decarbonization of city energy systems plays an important role to meet climate targets. We examine the consequences of integrating electric cars and buses into the city energy system (60% of private cars and 100% of public buses), using three different charging strategies in a modelling tool that considers local generation and storage of electricity and heat, electricity import to the city, and investments to achieve net-zero emissions from local electricity and heating in 2050. We find that up to 85% of the demand for the charging of electric cars is flexible and that smart charging strategies can facilitate 62% solar PV in the charging electricity mix, compared to 24% when cars are charged directly when parked. Electric buses are less flexible, but the timing of charging enables up to 32% to be supplied by solar PV. The benefit from smart charging to the city energy system can be exploited when charging is aligned with the local value of electricity in the city. Smart charging for cars reduces the need for investments in stationary batteries and peak units in the city electricity and heating sectors. Thus, our results point to the importance of sectoral coupling to exploit flexibility options in the city electricity, district heating and transport sectors.
  •  
5.
  • Heinisch, Verena, 1991, et al. (författare)
  • The impact of limited electricity connection capacity on energy transitions in cities
  • 2021
  • Ingår i: Smart Energy. - : Elsevier BV. - 2666-9552. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the impacts of the connection capacity for electricity transfer between a city and a regional energy system on the design and operation of both systems. The city energy system is represented by the aggregate energy demand of three cities in southern Sweden, and the regional energy system is represented by Swedish electricity price area SE3. We minimize the investment and running costs in the electricity and district heating sectors, considering different levels of connection capacity between the city and the regional energy systems; connection capacities equal to 100%, 75%, 50% and 0% of the maximum city electricity demand. We find that a system design with 50% connection capacity is only 3% more expensive in terms of total costs than a system with 100% connection capacity. However, shifting electricity generation capacity from the regional to the city energy system with 50%, as compared to 100%, connection capacity leads to a higher marginal cost for electricity in the city than in the region. With the highest connection capacities, 75% and 100%, the district heating sector in the city can support wind power integration in the regional energy system by means of power-to-heat operation. Modeling systems with different connection capacities makes our results applicable to other fast-growing cities with potential to increase local electricity production and sector coupling between the electricity, district heating and electrified transport sectors.
  •  
6.
  • Lehtveer, Mariliis, 1983, et al. (författare)
  • Actuating the European Energy System Transition: Indicators for Translating Energy Systems Modelling Results into Policy-Making
  • 2021
  • Ingår i: Frontiers in Energy Research. - : Frontiers Media SA. - 2296-598X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, we define indicators, with a focus on the electricity sector, that translate the results of energy systems modelling to quantitative entities that can facilitate assessments of the transitions required to meet stringent climate targets. Such indicators, which are often overlooked in model scenario presentations, can be applied to make the modelling results more accessible and are useful for managing the transition on the policy level, as well as for internal evaluations of modelling results. We propose a set of 13 indicators related to: 1) the resource and material usages in modelled energy system designs; 2) the rates of transition from current to future energy systems; and 3) the energy security in energy system modelling results. To illustrate its value, the proposed set of indicators is applied to energy system scenarios derived from an electricity system investment model for Northern Europe. We show that the proposed indicators are useful for facilitating discussions, raising new questions, and relating the modelling results to Sustainable Development Goals and thus facilitate better policy processes. The indicators presented here should not be seen as a complete set, but rather as examples. Therefore, this paper represents a starting point and a call to other modellers to expand and refine the list of indicators.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy